
THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE XIV MECHANICAL ENGINEERING, ISSN 1224-5615 

2012 

71 

 
ON THE USE OF APPROXIMATE 

NUMERICAL AND ANALYTICAL METHODS 
IN ORDER TO SOLVE THE DIFFERENTIAL 

EQUATIONS THAT DESCRIBE VIBRATIONS 
OF THE MECHANICAL SYSTEMS 

 
Assoc.Prof.Math.PhD.Eng. Gh.Cautes 

“Dunarea de Jos” University of Galati 
 

ABSTRACT 
 
The paper makes a comparative study on the approximation errors of the 
solutions of the differential equations of second order using different 
numerical methods,  a study which is assessed by the necessity of numerical 
solving of the non-linear differential equations that describe the vibrations 
of the mechanical systems. For every resulted analytical solution from a 
differential equation we can compare the approximation errors for 
movement, speed and acceleration using the Runge-Kutta and finite 
differences methods. Then, the smallest approximation errors of the 
numerical method will be compared to the approximation errors using a 
linearization method that the author published in a previous paper. In the 
end, we present conclusions and recommendations concerning the use of 
approximation numerical methods for the approximate solutions.  
 
KEYWORDS:  mechanical system, non-linear vibration 

 
 

1. INTRODUCTION 
 Forced vibrations of the harmonical 
oscillators are described by second order  
differential equations such as 

                              
tsinFkxxhxm             (1) 

 
where x is the movement, m is the oscillators 
mass, h is the damping factor, k is the elastic 
constant and  tsinF   is the excitation force.  

The analytical solution of the 
differential equation is 
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and φ and α are the initial phases of the free 
respectively the damped oscillation, a and A  
result from the initial conditions of movement. 

 
 

In [1] it is presented an approximate 
analytical method for solving the differential 
equation (1) using linearization, when k is not a 
constant but depends on the movement through 
a polynomial expression  
 

...dxcxbxaxkk 432
0     (4) 

 
where  0k  is a rigidity static coefficient and 

d,c,b,a … are rigidity coefficients in a 
dynamic regime.  

We obtain the approximate analytical 
solution  
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where 
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The sizes 521 w,...,w,w  are amplitudes  
and 521 ,...,,   are the phases of the 
excitation spectrum. 
 

2. THE EVALUATION OF THE 
APPROXIMATION ERRORS 

 We will do  a comparative study on the 
approximation errors of the solutions from the 
differential equation (1), comparing the results 
obtained by numerical integration methods 
(Runge-Kutta, finite differences) to the exact 
analytical solution and the one obtained 
through linearization. The maximum relative 
misbehaviour is calculated 
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where 

iRKx  - the movement calculated with Runge-

Kutta method at it   moment; 

iDFx  - the movement calculated with finite 

differences at it   moment; 

iANx - the movement calculated from the 

analitical solution from the it  moment; 

ANMAXx , ANMINx - the highest and the 

lowest value of movement, calculated with 
analytical solution.  
           The quadratic medium misbehaviour 
will be 
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n being the number of  moments when we make 
the comparisons.  
 

3. NUMERICAL EXAMPLES 
 At the beginning we shall see the 
misbehaviours from the exact analytical 
solution when we change the step of 
integration.  
            The numerical data for the differential 
equation (1) are:  
 

;kg600m  ;m/sN864h 

 ;m/N102k 6 ;N102F 4
 s/rad50   

 
and the initial conditions are null. 
 In figure 1, which shows the graphical 
solution, we observe the evolution of errors 
from the two numerical methods for the 

increment 310dt   seconds. 
 

 
Fig.1 Errors when approximating movement for 
an elastic linear system in a forced vibration, 

with the  increment 310dt  s. 
For duration 0.50s it results: movement 

between 0.006 and -0.005 m; maximum  errors 
between 18.705 and -19.374%; medium 
quadratic misbehaviour using Runge-Kutta 
method 2.100; medium quadratic misbehaviour 
using finite differences method 9.434.  

In figure 2, which shows the graphical 
solution, we observe the evolution of errors 
from the two numerical methods for the 

increment 410dt   seconds. 
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Fig.2 Errors when approximating movement for 
an elastic linear system in a forced vibration, 

with the  increment 410dt  s. 
For duration 0.50s it results: movement 

between 0.006 and -0.005 m; maximum  errors 
between 2.293 and -2.266%; medium quadratic 
misbehaviour using Runge-Kutta method 0.210; 
medium quadratic misbehaviour using finite 
differences method 1.086. 

From the error analysis, we show that 
for both methods we find a reduction of errors 
when we lower the time increment and a better 
precision of the Runge-Kutta method than the 
finite differences method. We find out that the 
level of precision characterized by the  medium 
quadratic misbehaviour increases directly 
proportional with the decrease of the increment. 
 When we cannot find an exact 
analytical solution for a differential equation 
we obtain the solution using the numerical way. 
If the solution is a movement, we find other 
laws of oscillatory movement like  speed and 
acceleration through numerical specific 
calculation such as numerical derivation of 
space or integration of the differential equation 
after a modified algorithm in order to obtain 
speed and acceleration. We shall do a 
numerical solving to observe the level of errors 
for speed and acceleration.   

In figures 3, 4 and 5 we compare the 
solutions of the differential equation (1) for an 

increment 510dt  during 5,0 seconds, but 
this is done for free damping oscillations 
(homogeneous equation). 
 

 
Fig.3 The evolution of errors when 
approximating movement for an elastic linear 
system in a free damped vibration. 

For duration 0.50s it results: movement 
between 0.982 and -0.961 m; maximum errors 
between 0.295 and -0.272%; medium quadratic 
misbehaviour using Runge-Kutta method 0.018; 
medium quadratic misbehaviour using finite 
differences method 0.138. 
 

 
Fig.4 The evolution of errors when 
approximating speed for an elastic linear system 
in a free damping vibration. 

For duration 0.50s it results: speed 
between 54.443 and -56.613 m/s; maximum  
errors between 0.287 and -0.263 %; medium 
quadratic misbehaviour using Runge-Kutta 
method  0.018; medium quadratic misbehaviour 
using finite differences method 0.134. 
 

 
Fig.5 The evolution of errors when 
approximating acceleration for an elastic linear 
system in a free damping vibration. 

For duration 0.50s it results:  
acceleration between 3203.951 m/s/s and                   
-3256.019 m/s/s; maximum  errors between 
0.273 and -0.295%; medium quadratic 
misbehaviour using Runge-Kutta method 0.018; 
medium quadratic misbehaviour using finite 
differences method 0.139. When observing the 
misbehaviours in the approximation of speed 
and acceleration using the two numerical 
methods we see the absence of propagation of 
the approximation errors, sometimes the level  
of errors improves when we calculate the 
approximate speed or acceleration rather than 
obtaining the space. 
 The examples we presented have 
analysed the phenomenon for a small increment 
of time. In order to understand more, we exam 
the misbehaviours for a bigger increment of 
time,  of 4 seconds, figures 6, 7 and 8. 
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Fig.6 The evolution of errors when 
approximating movement for an elastic linear 
system in a free damping vibration.  

For duration 4.00s it results:  
movement between 0.917 and -0.960 m; 
maximum  errors between 0.449 and -0.448%; 
medium quadratic misbehaviour using Runge-
Kutta method 0.009; medium quadratic 
misbehaviour using finite differences method 
0.244. 

 

 
Fig.7 The evolution of errors when 
approximating speed for an elastic linear 
system in a free damping vibration. 

For duration 4.00s it results: speed 
between 54.267 and -56.613 m/s; maximum 
errors between 0.438 and -0.439%; medium 
quadratic misbehaviour using Runge-Kutta 
method 0.009; medium quadratic misbehaviour 
using finite differences method 0.239. 
 

 
Fig.8 The evolution of errors when 
approximating acceleration for an elastic linear 
system in a free damping vibration. 

For duration 4.00s it results: 
acceleration between 3203.951 ms/s/s and                   
-3067.422 m/s/s; maximum  errors between 
0.447 and -0.447%; medium quadratic 
misbehaviour using Runge-Kutta method 0.009; 
medium quadratic misbehaviour using finite 
differences method 0.244. We observe that for 
solutions calculated on a bigger increment of 
time, the level of errors decreases when 

applying the Runge-Kutta method and increases 
when applying the finite differences method, 
especially when we analyse speed and 
acceleration. Back to forced oscillation, the 
calculation errors of movement, speed and 
acceleration will have the values from figures 9, 

10 and 11, using an increment 510dt  . 
 

 
Fig.9 The evolution of errors when 
approximating movement  for an elastic linear 
system harmonically excited. 

For duration 0.50s it results:   
movement between 0.006 and -0.005 m; 
maximum  errors between 0.234 and -0.230%; 
medium quadratic misbehaviour using     
Runge-Kutta method 0.021; medium quadratic 
misbehaviour using finite differences method 
0.110. 
 

 
Fig.10 The evolution of errors when 
approximating speed  for an elastic linear 
system harmonically excited. 

For duration 0.50s it results:   speed 
between 0.452 and -0.461 m/s; maximum  errors 
between 0.224 and -0.202%;medium quadratic 
misbehaviour using Runge-Kutta method 0.031; 
medium quadratic misbehaviour using finite 
differences method 0.091. 

 

 
Fig.11 The evolution of errors when 
approximating acceleration for an elastic linear 
system harmonically excited. 
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For a duration of 0.50s it results:   
acceleration between 50.113 and -52.151 m/s/s; 
maximum  errors between 0.132 and -0.131%; 
medium quadratic misbehaviour using Runge-
Kutta method 0.042; medium quadratic 
misbehaviour using finite differences method 
0.061.  

We observe that in the case of forced 
oscillations we don’t notice esential differences 
when comparing to the case of free damping 
oscillations.  

The analysis above was made for a 
system that produces free or forced oscillations 
with a variation for one excitation of pulsation. 
 For a full examination it is necessary to 
find out the evolution of the calculation errors 
compared to the variation for the excitation of 
pulsation.  

The errors are calculated using the 
values of the amplitudes resulted for different 
frequences, compared to the amplitude given by 
the exact solution with the time being 0,5s or 
1s as in figure 12. 

 

 

 
Fig.12 The evaluation of errors when 
approximating movement using Runge-Kutta 
and finite differences methods  for an elastic 
linear system harmonically excited for a 
duration of  0,5s and 1s. 

For a duration of 0.50s it results: 
medium quadratic misbehaviour using     
Runge-Kutta method is 0.0013; relative errors 
between -0.00263% and 0.00193%; medium 

quadratic misbehaviour using finite differences 
method =0.7098; relative errors between           
-0.06514 and 1.50515%; frequency 25Hz. 

For a duration of 1.00s it results:  
medium quadratic misbehaviour using Runge-
Kutta method is 0.0013; relative errors between             
-0.00263 and 0.00193%; medium quadratic 
misbehaviour using finite differences method 
0.7098; relative errors between -0.06514 and 
1.50515%; frequency 25Hz. 

Further more we will compare the 
approximation errors when obtaining the 
analytical approximate solution using 
linearization with the one obtained using 
Runge-Kutta method, which proved to be more 
precise.  
 For the experimental data presented 
above:  

27 m/N1025,1a  , 36 m/N1058,1b   
4m/N13,7c  , 512 m/N104,5d  , 

m/N102k 6
0  , m108A 4 , 

we obtain the results provided in figure 13.  
 

 
Fig. 13. The evaluation of  the error level when 
approximating movement using the 
linearization method.  

For a duration of 0.75s it results: 
movement between 5.701 and -5.216 m; 
maximum  errors between 0.484 and -1.694%; 
medium quadratic misbehaviour 0.711.  

Increasing the non-linearization grade 
while changing the values of coefficients  

d,c,b,a , the level of approximation does not  
change significantly.  
 Analysing the misbehaviours, we need 
to calculate the absolute error compared to the 
exact solution, using the solution obtained 
through linearization.  

If the exact solution from the Runge-
Kutta method has a 1  quadratic medium 
misbehaviour compared to the exact solution, 
and the solution obtained using  linearization 
has a 2  quadratic medium misbehaviour 
compared to the one from the Runge-Kutta 
method,  the quadratic medium misbehaviour of 
the solution obtained through linearization 
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compared to the exact solution will be in the 
worst case 21   which is acceptable.  

The solution obtained using the 
linearization looks less precise than the ones 
resulted from the numerical methods, which 
could be a disadvantage. Despite this 
incovenient, which can be corrected, the 
method offers a great advantage: the posibility 
of obtaining an analytical solution, even though 
it is be an approximate one.  
 In the linearization process we start 
from a solution at first approximation of the 
following form 
 

tsinAx                      (9) 
 
with the amplitude A known. For the method to 
be appliable in any situation, we must find a 
way to find out this amplitude.  

In order to solve this problem:  
- we solve the differential equation that 

characterised the system’s vibrations 
using the Runge-Kutta method and we  
show a maximum amplitude maxA ; 

- we solve the equation using the 
linearization starting with the solution 
with amplitude A given by the previous 
solving. 
We need to specify that we cannot work 

with random values for the amplitude A 
because the results will be severely affected by 
errors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using a numerical simulation with the 
anterior data and N100F   and applying the 
Runge-Kutta method with a value 

m109,2A 3
max

 , the quadratic medium 
misbehaviour is a lot lower  than when we use  
an experimental value for the amplitude for the 
solution at the first approximation. 

 
4. CONCLUSIONS 

Analysing results, we observe that the 
Runge-Kutta method offers a better precision 
when approximating solutions, compared to the 
finite differences method, erros being with at 
least one order lower, for a better precision  we 
need to use a small increment.  

The linearization method has 
limitations not only to smaller grades of non-
linearity, but its adaptation to any concrete 
situations will be done by choosing a larger or 
smaller number of terms in the polynom that 
describes the coefficient of elasticity. Choosing 
correctly the movement’s amplitude in the first 
approximation means that the level of errors is 
comparable to the Runge-Kutta method, also 
offering the advantage  of an analytical research 
of the non-linear vibrations of the system with 
different generalizations being possible. 
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