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ABSTRACT 
 

Many phenomenons of mechanical nature possess non-linear 

vibrations, their mathematical forming operation leading to differential 

equations or to systems of differential non-linear equations. 

In this work it is shown that we can determine aproximate analitical 

solutions for non-linear differential equations, such as  

( ) ( ),x f x x x F tε+ + =&& & . We use the perturbations method for homogeneous 

and non-homogeneous for low parameters and we show that in special 

situations this equations are Van der Pol or Duffing equations. 
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1. Introduction 
 Generally, phenomenons of mechanical 

nature possess non-linear vibrations and they 

are described [1] by differential equations such 

as: 

 

( )x f x, x, t 0+ =&& &                       (1) 

 

 An important category of non-linear 

equations characterizes the elastic systems with 

small non-linear, distinguished by the presence 

of a parameter in the equation. 

We shall search for aproximate 

analitical solutions for the differential 

equations such as: 

 

( ) ( )x f x, x x F tε+ + =&& & ,             (2) 

 

where x is the movement, x& - the speed, ε  - 

small parameter and F is the excitation force, 

using the perturbations method. 

 In special situations, this kind of 

equations are Van der Pol or Duffing 

differential equations. 

 

 

2. Free oscillations 
  To illustrate the procedure we consider 

the differential equation: 

 

( )2 3
1 0x ax x bx xε  

− − − + =  
&& & ,           (3) 

 

where ε  is supposed to be small. Assuming 

that the ε -term can be neglected, (3) reduces 

to: 

 

         0x x+ =&& ,   (4) 

 

the solution of which is: 

 

cos sinx t tα β= + ,        (5) 

 

and this solution is periodic with 2π period.  

If the periodic solutions of (3) exist, 

then the effect of the  ε -term is to change the 

period slightly to 2π ω , say, where ( )ω ω ε=  

differs slightly from unity [2].  
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It is supposed then that  

 

( ) 2

1 2
1 ...ω ω ε ω ε ω ε= = + + +         (6) 

 

 Change the independent variable in (3) 

by means of the substitution:  

 

tθ ω= ,   (6’) 

 

to give 

 

( )2 2 3
1 0x a x x bx xω ε ω′′ ′− − − + = 

 
,   (7) 

 

where primes denote differentiation with 

respect to θ .  

As usual, let 

 
2

0 1 2
...x x x xε ε= + + + .   (8) 

 

 Since only one additional condition can 

be imposed on x other than periodicity, it is 

supposed that  

 

x(0)=0,   (8’) 

 

which implies that 

 

( ) ( )0 1
0 0 ... 0x x= = = .          (9) 

 

 Substituting the series for 2ω , 

( )2
1x xω ′ − , 3

x , x in (7) and equating the 

coefficients of the powers of ε  to zero, we 

deduce from the vanishing of the coefficient of 
0ε that 

 

                        
0 0

0x x′′ + = ,                  (10) 

whence  

 

             
0

sinx α θ=                 (11)   

 

since ( )
0

0 0x =  ; here α is a constant to be 

determined from the condition that the solution 

is to be periodic.  

Similarly, equating to zero the 

coefficient of ε , it is found that 

 

2

1 1

2

1

3 3

1 cos
4

3
2 sin

4

cos3 sin3 .
4 4

x x a

b

a b

α θ

α
α ω θ

α α
θ θ

α′′ + = − +

+ − +

+ +

 
 
 

 
 
 

           (12) 

 

If the first two terms on the right-hand 

side of (12) are allowed to persist, their 
contribution to the particular integral is 

nonperiodic.  

Hence α and 
1

ω  are chosen such that 

these two terms vanish, that is  

 

  
2

1 0
4

α
− =  ,  i.e. 2α = ,           (13) 

 

and 
2

1

3
2 0

4

bα
ω − =  ,  i.e. 

1

3

2

b
ω =  .    (14) 

 

 With these values of α and 
1

ω  the 

solution of (12) is now  

 

( )
1

cos cos3 sin 3
sin

4 4
x

ba θ θ θ
β θ

−
= + − ,  (15) 

 

since ( )
1

0 0x = . The constant β is determined 

later using once again the condition of 

periodicity.  

Since α=2, (11) has the solution 

 

0
2sinx θ= .  (16) 

 

 From the vanishing of the coefficient of 

ε2, we find, after some reduction, that  

 

( )

( )
( )

( )
( )

( )

2 2
2

2
2

2 2

2 2

3 2 cos
2 2

15 56 4 sin
4 4

32 cos3
4

213 sin 3
4 2

3 cos5
2 2

3 3 sin 5 .
4 4 4

(17)

b ab

b ab a

aba

b ab a

ab b

a b a

x x β θ

β ω θ

β β θ

β θ

θ

θ

− − −

− − − + − +

+ + − +

+ − − − −

− + +

+ − +

′′ + =
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Again, if the solution is to be periodic, 

the coefficients of the cos , sinθ θ   on the right-

hand side of (17) should be zero.  

This means that 

 

( )1 3

4

ab
β

−
= ; 

( ) ( )2

2

9 1 2 5 4

16

b a a a
ω

+ + −
= −          (18) 

on substituting for β; making the substitution 

for β in (15) 

 

            

( )

( )

1

1 3
sin

4

cos cos3 sin 3 .
4 4

a
x

a b

b
θ

θ θ θ

−
= +

+ − −

        (19) 

 

 Proceeding this way, (17) we can solve, 

the constant of integration, an 
3

ω  being 

evaluated from the condition that x3  should be 

periodic.  

The solution obtained so far has the 

form 

 

  
( )

( )

2sin [ cos cos3
4

1 3 sin sin 3 ] ... ,

x t a t t

b a t b t

εω ω ω

ω ω

= + ⋅ − +

+ − − +

    (20) 

 

where 

 

( ) ( )2

29 1 2 5 431 ... .
4 16

b a a abω ε ε
+ + −

= + −  (21) 

 

Particular cases: 

 1.  If 1, 0a = = b , then, (3) is Van der Pol’s 

differential equation. The solution which has 

2π
ω

 period  and such that x(0)=0, is  

 

       ( )2sin cos cos3
4

x t t tεω ω ω= + − … ,   (22) 

 

with 

                        
2

1
16
εω = − .                       (23) 

 

2. If  0, 1a = = b , then (3) has a solution  

which has x(0)=0 and 2π
ω

 period: 

 

      ( )2sin sin sin 3
4

x t t tεω ω ω= + − … ,    (24) 

 

with  

                     

2
3 9

1
2 16

ε ε
ω = + − .                 (25) 

 

3. Forced oscillations. 
 We consider the differential equation 

 

( )2 3
1 cosx ax x bx x tε ω− ⋅ − − + =  && &          (26) 

 

and try to find a solution which has 2π
ω

 period 

and which satisfies 

  

x(0)=α.   (26’) 

 

Again we put [3] 

 

tθ ω=  ,                        (27)  

   

thus modifying the above equation to 

 

( )2 2 3
1 cosx a x x bx xω ε ω θ′′ ′− ⋅ − − + =   ,       (28) 

 

where primes denote differentiation with 

respect to θ . If the solution of (26) has period 

2π
ω

, then the solution of  (28) has period 2π .  

In this case we take ( )ω ε  in the form 

of: 

 

               ( ) 2

0 1 2
...ω ε ω ωε ω ε= + + +     (29)  

 

an as usual equation as the following:  
 

                 
2

0 1 2
....x x x xε ε= + + +  .        (30) 

  

The initial condition requires that 

 

          ( )
0

0x α= ;  ( ) ( )
1 2

0 0 ... 0x x= = = .      (31) 

 

 Substituting the appropriate series in 

(28) and then equating the coefficients of the 

corresponding powers of ε  on each side of the 

resulting equation, we find from the coefficient 

of ε 0
 that 

 

                      2

0 0 0
cosx xω θ′′ + = .                 (32) 

 

 The solution of this differential 

equation is 

 

20

0 0 0

1cos sin cos
1

x θ θα β θ
ω ω ω

= + +
−

,    (33) 
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from which it is evident that 
0

1ω ≠  for a 

periodic solution. 

 Hence, if the solution of (33) is to have 

periodicity 2π , it follows that α=β=0 and 

 

                     
20

0

1 cos
1

x θ
ω

=
−

.                 (34) 

 
 The initial condition x0(0)= α  requires 

that 

 

2

0

1
1

α
ω

=
−

,  i.e. 2

0

11ω
α

= − ,            (35) 

 
so that 

0
cosx α θ= .                       (36) 

 

If 0 < α
 
< 1 then no periodic solution 

exists . 

Equating the coefficients of ε  in the 

expansion of (28), we have: 

 

    ( )2 3 2

0 1 1 0 1 0 0 0 0 0
2 1x x x bx a x xω ω ω ω′′ ′′ ′+ = − − − −    (37) 

 

which, on using (36) becomes: 

 

( )
( )

2

2

2

0 1 1 0 1

0

32 cos
4

1 sin
4

bx x

a

αω α ω ω θ

α ω θα

′′+ = − −

− − −

     

             

3
3

0cos3 sin 3
4 4

ab ωα θ θ
α

− − .           (38) 

 

 Once more, the only solution having 

period 2π  arises from the particular integral, 

and is 

 

( )
( )

2
2

2

2

1 0 1

0

32 cos
4

1 sin
4

bx

a

αα ω ω θ

ω θαα

= − −

− − −

       

        
( ) ( )

4
4

0cos3 sin 3
4 9 8 4 9 8

ab ωα θ θ
α α

α
− −

− −
.    (39) 

 

 In order to satisfy the condition 

x1(0)=0, it is evident that: 
 

            
( )

2 4

0 1

3b b2
4 4 9 8
α αω ω

α
= +

−
.            (40) 

 

Whence, on substituting for 
0 1

2ω ω  in 

the previous expression for x1, we see that: 

 

( )
( )

( ) ( )

4

2 2

2

1

0

cos cos3
4 9 8

1 sin sin 3
4 4 9 8

bx

a

α θ θ
α

ω θ θ
α

α αα

= − −
−

− − +
−

 
  

.           (41) 

 

This process is continued. 

Particular cases: 

1. If 1, 0a = = b  then we have Van der Pol’s 

equation with a forcing term.  

 The solution which has period 2π
ω

 in t is 

 

( ) ( )

2 2
2

x cos t (42)

11 1 sin t sin3 t
4 4 9 8

α ω

α αεα ω ω
α α

= −

 
− − − + − 

 

 

since from (35) 

 

                       
0

11ω
α

= − .                     (43) 

 

2. If 0, 1a = = b , then the equation is 

Duffing’s equation.  

 The solution which has period 2π
ω

 is in 

this case 

 

         

( )
( )

4

2

cos

cos cos3 ... .
4 9 8

x t

t t

α ω

εα ω ω
α

= +

+ −
−

       (44) 

 

4. Conclusion 
 The non-linear equations (2) arises in a 
number of physical applications and includes 

the special cases known as Van der Pol’s and 

Duffing’s equations. 
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