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ABSTRACT

Many phenomenons of mechanical nature possess non-linear
vibrations, their mathematical forming operation leading to differential
equations or to systems of differential non-linear equations.

In this work it is shown that we can determine aproximate analitical
solutions  for non-linear differential equations, such as
i+ef (x,)'c)+x= F (t) We use the perturbations method for homogeneous

and non-homogeneous for low parameters and we show that in special

situations this equations are Van der Pol or Duffing equations.
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1. Introduction

Generally, phenomenons of mechanical

nature possess non-linear vibrations and they

are described [1] by differential equations such
as:

¥+ f(x x1)=0 (1)

An important category of non-linear

equations characterizes the elastic systems with

small non-linear, distinguished by the presence
of a parameter in the equation.

We shall search for aproximate
analitical  solutions for the differential
equations such as:

i+ef(xx)+x=F(1), (2)

where x is the movement, X - the speed, € -
small parameter and F is the excitation force,
using the perturbations method.
In special situations,
equations are Van der Pol
differential equations.
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2. Free oscillations
To illustrate the procedure we consider
the differential equation:

X—S[a)'c(l—xz)—bxg’}—i-x:O’ (3)

where &€ is supposed to be small. Assuming
that the & -term can be neglected, (3) reduces
to:

X+x=0, 4
the solution of which is:
x=acost+ fBsint, ()

and this solution is periodic with 27 period.
If the periodic solutions of (3) exist,
then the effect of the & -term is to change the

period slightly to 277(0, say, where w:w(g)
differs slightly from unity [2].
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It is supposed then that

w=0(e)=1+0e+0e +.. (6)

Change the independent variable in (3)
by means of the substitution:
O=uwr, (67)

to give

a)zx”—s[a(ox'(l—xz)—bx3}+x=0, (7

where primes denote differentiation with
respect to 6.
As usual, let
x=x +E&x +€2x2 +.... (8)

Since only one additional condition can
be imposed on x other than periodicity, it is
supposed that

x(0)=0, (8”)

which implies that
% (0)=x(0)=..=0. )
Substituting the series for @7,

a)x'(l—xz), X, X in (7) and equating the
coefficients of the powers of & to zero, we
deduce from the vanishing of the coefficient of
£ that

(10)
whence

X,=asin @ (11)
since x,(0)=0 3 here o is a constant to be

determined from the condition that the solution
is to be periodic.

Similarly, equating
coefficient of &, it is found that

to zero the
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’ a
x +x :aa(1—4]0050+

1

2

(12)

+a[2a)l _ b )Sin¢9+

3 3

+a—ac0539+blsin39 .
4 4

If the first two terms on the right-hand
side of (12) are allowed to persist, their
contribution to the particular integral is
nonperiodic.

Hence o and Ct)1 are chosen such that

these two terms vanish, that is

% o e a=2. (13)
4
and
20 3ba 3b (14)

_7:0 N le a)l=7 .
4 2

1
With these values of o and C()l the
solution of (12) is now

a(cos@—cos36) bsin3@
4

x, = Bsinf@+ . (15)

since x(0)=0. The constant B is determined

later using once again the condition of
periodicity.
Since a=2, (11) has the solution
X, =2sin@. (16)

From the vanishing of the coefficient of
&2, we find, after some reduction, that

x:+x2=(%—%—2/3)cos6’—
_(6pp 150" _5d" , , _ )

(6,6’19 A 4 T 4w |sin 6 +
+(aﬁ+2ﬂ—%)c0539+

21b” _ z_g) i _

+(3/)’b 4 95 sin 36
_(3ab . b

( > +2)c0556’+

3a° _3b° g)-
+( ¢ B’ @ )Sinse a7
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Again, if the solution is to be periodic,
the coefficients of the cos@, sin @ on the right-

hand side of (17) should be zero.
This means that

b(1-3
PREE)
w2=_9b‘(1+2a)1—6|-a(5a—4) (18)

on substituting for P; making the substitution
for B in (15)

X, Msin0+

+%(COS€ —c0s30)

(19)

_b 360

4sm .
Proceeding this way, (17) we can solve,
of @, being
evaluated from the condition that x; should be

periodic.
The solution obtained so far has the

the constant integration, an

form

x= 2sina)t+%-[a(cosa)t—cos3a)t)+

(20)
+b(1—3a)sin @ — bsin3ax] + ...,
where
o=1+%e- %2(”2“)12“(5“‘4) £ (21)

Particular cases:
1. If g=1,b=0, then, (3) is Van der Pol’s
differential equation. The solution which has
2%) period and such that x(0)=0, is

x=2sina)t+§(cosa)t—cos3a)t)m, (22)
with
—1_£ (23)
w=1 16
2. If a=0b=1, then (3) has a solution

which has x(0)=0 and 27/ period:
®

x=2sin a)t+%(sina)t—sin3a)t) s (24)

with
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(25)
3. Forced oscillations.

We consider the differential equation

x—e‘{ax(l—xz)—bxﬂ+x=cosa)t (26)

and try to find a solution which has 27 period
[2)

and which satisfies

x(0)=a. (26%)
Again we put [3]
O=ar . (27)
thus modifying the above equation to
a)zx”—é‘~[aa)x'(1—xz)—bx3]+x=cos9, (28)
where primes denote differentiation with

respect to @. If the solution of (26) has period
277, then the solution of (28) has period 27 .
®

In this case we take a)(g) in the form

of:
o(e)=0,+we+we +... (29)
an as usual equation as the following:
x=x0+x]€+x2€2+.... . (30)
The initial condition requires that
x(0)=a: x(0)=x,(0)=..=0. (D

Substituting the appropriate series in
(28) and then equating the coefficients of the
corresponding powers of £ on each side of the
resulting equation, we find from the coefficient
of & that

@x +x,=cos6. (32)
The solution of this differential
equation is
x,=acosZ + fsin€ +—1 _cosg. (33)
), o, 1-a
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from which it is evident that ,#1 for a

periodic solution.
Hence, if the solution of (33) is to have

periodicity 27, it follows that a=p=0 and

1
X =——cos6- (34)
0 1_ a)OZ
The initial condition x,(0)= a requires
that
__1 ie. gi=1—1 (35)
o= > w =1 >
- @
so that
x,=0cosf. (36)
If 0 < a <1 then no periodic solution
exists .

Equating the coefficients of &£ in the
expansion of (28), we have:

2

)

” ” 3 ’ 2
rX, + X, = 20,0x, — bx, —amX, (1 - xo) (37)

070

which, on using (36) becomes:

a)(fxf+x]=0{(2a)oa)l—3bTa)cos0—
_ _ & \ging-
(Zaa)O(I 4)sm0

b o539 - 99 in3g. (38)

4 4

Once more, the only solution having
period 27 arises from the particular integral,
and is

xl:az(Za)Oa)l—g’bf)cosﬁ—
—a(ooaz(l—%)sinﬁ—
__ba __ava . (39
4(9—80{)00536 4(9_8a)sm36
In order to satisfy the condition
x1(0)=0, it is evident that:
2wy, =3 ba (40)
=4 T 4(9-8a)
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Whence, on substituting for 2(00(01 in

the previous expression for x;, we see that:

__ ba _ _
xl—4(9_ )(0056 c0s36) A1)
_ 2 _ : . : .
anx |:(1 7(24 )sm0+74(9a_8 )sm3(9:|

This process is continued.
Particular cases:
1. If a=1 b=0 then we have Van der Pol’s

equation with a forcing term.
The solution which has period 27[/ intis
w

X=wacos ot — (42)
e 1Ll g
ea |1 0([(] 4)szna)t+4(9_8a)sm3a)t}
since from (35)
w=1-1. (43)
0 [04
2. If 4=0b=1, then the equation is

Duffing’s equation.
The solution which has period 277 is in
(2

this case
X=qQcoswrt+
. 44
+—E& _(cosaxr —cos3ax)... . “9
4(9-8a)

4. Conclusion
The non-linear equations (2) arises in a
number of physical applications and includes
the special cases known as Van der Pol’s and
Duffing’s equations.
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