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ABSTRACT

Within the kinematic study of a rigid solid, its motion is studied face-
to-face by a reference system, fixing positions, speeds and accelerations of
a reference system, solidarily connected to the rigid solid.
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1. Introduction
The author considers, in this paper, the
rotation of the rigid solid around a certain axis
(A), with an angle @ (Figure 1). The motion of
a solid rigid is studied face-to-face by a
reference system with fixing position.

2. Description method of analysis
We deem the rotation axis (A), defined
face-to-face by a tri-orthogonal system
OpxgYoZq, which is fixedly connected with the
direction cosines
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and the reference system O;x;y;z;, whose axis
O,x; coincides with the rotation axis (A), and
the axis O,z; is situated in Oyxyzy plan.

The positions of the reference system
axis Oxyy;z; are defined in connection with a
system fixedly connected by

1 1 1
le] N 0(11 =C0S0!],0512 =C0Sﬁ],0!]3 =COS7/]

@
0.y, : 0y =cos 0y ; 0y = cos By, 0055 = COS Y5

1 1 1
OIZ] N 0(31 =COS0[3,0[32 =Cosﬁ3,0!33 =COS7/3

Figure 1. Rotation of the rigid solid around a certain axis (A), with an angle @
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The transformation matrix from the

reference system Ojx;y;z; to the fixedly
reference system is:
@ Gy O3
la,,] =, a, a|=
il =| G G U3 |=
a3 O3 Os; 3)
cosa; cost, cosd;
=|cosf;, cosp, cosp;]|
cosy; cosy, cosy;

respectively from the fixedly reference system
OpxpYpZ2o to the reference system Oyx;y;z;:

a; & O
lagl=| a2 @ ay|=
| O3 Q3 O3 (4)
[cosa; cosf;, cosy,
=|cosa, cosf, cosy, |
| cosa;  cosf; cosy;

Using the relations that express the
perpendicularity conditions of two axes, we can
write

cosa cos B, +cosa, cos B, +
+cosa; cos B; =0

(5)
cos B, cosy; +cos B, cosy; +
+cos B;cosy; =0
in which, replacing
cosa; =cosa;cos fB; =cos B; ©)
cosy; =cosy;cos 3 =0;cos B, =sin 3
results:
cosacos f+cosa, sinB=0
cosacos f
=coS0Uy =————
sin
(N

cos fcosy+sinfcosy, =0
cos fcosy

sin

=cosy, =—
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Having in view the fact that each
element of the transformation matrix can be
equal to its cofactor, results:

cosa; = cos B, cosy, —cosy, cos B, =

cosy
sin 8

B _cos2 Bcosy

B sin

—cosysinff=—
(3)
cosy; =coso cos B, —cos 3, cosa, =
cosacos’ B _cosa

sin B sin B

We deem the rotation of a ¢ angle
system O;x;y;z;around the O;x; E(A) axis. In

=cosasinf+

this case, the transformation matrix becomes

1 0 0
[Rg)x]:[azle =0 cosgp —sing|
0 sing cos@

Considering a point M~ defined in
O,x,y,2, system, by vector (rzr), it results
from the rotation of @ around its axis (A), from

the point M belonging to the O)x;y;z;system,

by vector (rAI/I )

Knowing that the analytic expression of
the position vector is invariable face-to-face by
rotation of the coordinating axis, we can write:

)=o)

whence the result of left multiplying by [aZI]T,

(10)

1S:

[GZI]T(rIé'):[QZI]T(rAI/I ) (an

We go on writing that
)=o) (1)
i )=laso I ) (13)

which by [alo] left multiplying there results:

(’”1 ’):[010](’”0’)’

(14)
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(rnjl ): [010](0%) (15)
If we replace (14) and (15) in (11), the
result is shown in:

[‘121 ]T (rA24’)= [021 ]T [010](r1t04) (16)

whence by [alO]T left-multiplying, results:

[alo]T [a21 ]T (rz')= [010 ]T [021 ]T [“10](0(/)1 ) (17)

Seeing that

(9 )=laoF lan T (2)  as

the relation (17) becomes

(% )=lawo ) lan P lao i) 19

and the transformation matrix is

[ar]T = [am]T [a21]T [ayo]. (20)

The matrix [ar], defined by the relation
(20), define the rotation of the rigid solid
around the axis (A), with an angle ¢, face-to-
face by the reference system fixedly connected.

Calculating the matrix products

[azo ]T [azz ]T =
—eaB T
ca Casﬂ Sﬁ ] 0 0 (21)
= Cﬂ SIB 0 0 C§0 _Sgo =
B X 10 sp co
cy Cﬂs,[)’ o
:[azo]T
and
[‘120 ]T [aw ] =
cacfep+cpp —cre+cocfse
ca —
sp sp
=|ch speg —spsg  |x
casp—cfere  chepp+cacy
sp sp
ca cf cy
x_cac/)’ ; _cBey
sf sp (02)]
co ca
_=7 0 ==
sp sp
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finally, the transformation matrix the relation
becomes:

[ar ]T = [GJO]T [azz ]T [azo]z

r r r

;. Gy Oz (23)
_ r r
= 0

r r

Qi3 Q; O3

where
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s°p s°p
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s’
o}, = cach - cacsfe@+ cyfs@
sp
as, =c?f+s° g
ag —_
ol =cxf+ s — cPspeyy
sp
o =cocy+
L cac’ feyep+ e’ gp-cacyep+clocfse
s°B
, sBcfe sfPcas
o, = cfoy - SPPKP _ sheasy
sp sp
2 2
o, =2y - cacé?casmc /32 ’e
s°p s°p
L cherasp+ Coco
SZ,B .

If the (A) axis versor is written down (u),
_ I _
z[ux uy uZ]Tand vo=1-co,

we get the form given in eq.(2)

uUNQHAp U NQ-u sQ u,uNQtu, sp
0.1 = uavorso wuvorap i ve-usp|.cs
it ZV(p_u.V‘S(p uyuZV(pi_ux‘S(p uzquqH'C(P
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Having the rotation matrix, we can
determ the direction cosines and the rotation
angle:

A+ 0y + 0y — 1
@ =arccos 1 2 33 ; (26)
2

r r
Qr; — U3

_ r r 27

()= Q3 — s 27)
2S r r
Ay — Ay

3. Conclusions

Using the method presented in the previous
section the next conclusions result:

a) The presented solution is proper to the

calculation of the ¢ angle with values
between 0°and /80°. If ¢ = 0°or 180°,
the solution is undefined regarding the
position of the rotation axis;
When the vector (u) isn’t a unitary
vector it must be normalized, finding in
such a way its components face-to-face
by the fixedly reference system.

b)
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