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ABSTRACT 
 

This paper addresses issues of dynamic parameter identification of robot 

manipulators. A new identification approach with neural network based 

compensation of uncertain dynamics is proposed. The parameter identification 

process is divided into two steps. The first step is to determine unknown dynamic 

parameters using inverse dynamics of the robot manipulator and pseudo-inverse 

matrices. The second step is to establish a dynamic compensator by neural network 

and learning method for improving accuracy of the dynamic model with parameters 

given in the first step. A Direct Drive (DD) SCARA type industrial robot arm 

AdeptOne is used as an application example for the parameter identification. 

Simulations and experiments are carried out. Comparison of the results confirms the 

correctness and usefulness of the proposed identification method. 
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1. Introduction 
Model-based control and simulation of a robot 

manipulator need to know the dynamic model of the 

robot with specified parameters. In the past two 

decades, a large number of research results in 

modelling and parameter identification have been 

reported. The intensive research in this area has 

focused on the torque-controlled robots with the 

dynamics being formulated on the basis of joint 

torque vs. joint motion manner [1]~[4]. Practically 

speaking, except those robot arms used in laboratories 

as test beds, recently it is not easy to find such a 

torque-controlled robot manipulator in a huge number 

of commercially available industrial robots, because 

almost all industrial robots are equipped with servo-

controlled electrical motors and servo control units. 

Obviously, we need to take the dynamics of the 

motors, as well as the characteristics of the servo 

control units, into consideration in the parameter 

identification of the industrial robot manipulator. In 

recent years, on the other hand, neural networks have 

received considerable attention in the control and 

identification fields. It has been demonstrated that 

neural networks can be used effectively for the 

identification of nonlinear systems [5]. A large 

number of reports have been published on dynamics 

formulation using neural networks for control the 

design of robot manipulators[6] ~ [8]. 

In this paper, we propose a new identification 

method for robot manipulators using both a usual 

parameter identification approach and a dynamic 

compensator established based on neural network 

theory. First, we identify the dynamic parameters of 

the robot to specify robot arm dynamic equation that 

is derived by Lagrange Formulation [9]. Then, a 

parallel dynamic compensator is designed with a 

multi-layer neural network to approximate the 

unmodelled dynamic characteristics and the Lagrange 

Formulation based model with the identified 

parameters. A learning method is used to train the 

weights of each layer of the neural network in order 

to minimize output error between a reference input of 

the robot and the total output of the network and an 

inverted dynamic model of the robot with identified 

parameters. The whole dynamics of the robot is 

presented by combination of the dynamics equation 

and compensator. Identification experiments are 

carried out using an AdeptOne robot manipulator as a 

test bed to demonstrate the effectiveness and 

usefulness of the proposed method. Simulations are 

carried out on a dynamic model of the AdeptOne 

robot with combination of the Lagrange equations 
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and a dynamic compensator. Comparison of both 

results of the simulations and experiments justifies 

the correctness of the presented dynamic model.  

This paper is organized as follows. Sections 2 

presents the formulation of the dynamic model. 

Section 3 shows the basic idea and problem 

statements. Parameter identification using a 

traditional method is given in Section 4. The dynamic 

compensator design using neural network is designed 

in Section 5. Parameter identification experiments, 

and validation simulations are given in Section 6. 

Conclusions and discussions are presented in Section 

7. 

 

2. Dynamics 
The torque-based dynamics of robot manipulator is 

the popular dynamic model that is widely used for 

control design and simulation of robot manipulators. 

The dynamic model can be easily derived and 

expressed from Lagrange equation as follows 

 

τθgθθHθθM =++ )(),()( &&&       (1) 

 

where, 
n

R∈θ  and 
n

R∈τ are joint variable and 

torque, nnR ×∈)(θM is inertia matrix, 

nR∈),( θθH &  contains Coriolis and centrifugal 

forces, and nR∈)(θg  denotes the gravitational 

force. This type of dynamic model has been used in a 

control design for a class of torque control for the 

robots that can be seen in a lot of robotics 

laboratories. For almost all cases of control design of 

industrial robot manipulators, however, this kind of 

dynamics cannot be used directly because most 

industrial manipulators are not functionally designed 

on the basis of torque/force control but servo control. 

Therefore, we need to take this kind of characteristics 

of the industrial robot into consideration in a dynamic 

modelling and parameter identification and control 

design. To do so, we derive dynamics of the motors 

with servo control units as follows.  

 

v)θD(θfτRατLα v
11 =+++ −− &&&           (2) 

 

Though rates of amplifiers of the servo units are 

included in the parameters in the above equation, in 

the following, we rather like to use the nominal terms 

of parameters that are often referred to directly for a 

servo motor. ),,,( 21 nvvvdiag L=v  denoting the 

input voltage of the servo units; 

),,,( 21 nLLLdiag L=L , ),,,( 21 nRRRdiag L=R  

are matrices of inductance and resistance; and 

),,,( 21 ndiag ααα L=α is a matrix containing 

back electromotive constant of each servo motor as its 

elements; ),,,( 21 vnvvv fffdiag L=f  denotes 

matrix of viscous friction constants, and  )(θD & is a 

diagonal matrix with its diagonal elements indicating 

constants of Coulomb frictions and electrical dead 

zones of the motors. Combining (1) and (2) together, 
after some simple manipulations we obtain   

 

vθθθ,Hθθθ,RθθL =++ ),(ˆ)(ˆ)(ˆ &&&&&&&&&         (3) 

 

In order to derive parameter identification 
algorithms, we rewrite the dynamic model (3) into a 

set of linear equations of the unknown parameters as 

follows 

aθθθθYv ),,,( &&&&&&=               (4) 

 

where 
l

R∈a  is a vector containing unknown 

parameters to be identified; lnR ×∈),,,( θθθθY &&&&&&  is 

the regressor, a matrix consisting of non-parametric 

smooth functions of θθθ &&& ,,  and θ&&& , which can be 

formed as  
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Usually, ),,,( θθθθY &&&&&&  can be determined based on 

the experimental data and calculations. 

 

2. Problem statement 

For identification of a system, a suitable 
mathematical representation of the system is required. 

The main objective for identification of a robot 

system is to provide specific parameters to the given 

mathematical representation of the robot. Lagrange 

and Newton-Euler formulations are the most popular 

methods for dynamic modelling of robot 

manipulators, since they can express the most part of 

the dynamic characteristics of the robot and can be 

easily derived and easily used to control design and 

simulation. However, the mathematical representation 

derived from Lagrange formulation or Newton-Euler 
formulation sometimes cannot describe motion of the 

robot precisely. The reason lies in that there are some 

dynamic effects that are difficult to be modelled by 

using traditional modelling approaches. Among the 

effects, friction, for example, is a notable factor. So, 

we need a new method for modelling and 
identification in order to control and/or simulate the 

robot system precisely. 

Though some approaches of dynamic modelling of 

a robot using neural network technology have been 

proposed. Complicity of robot dynamics requires 

complicated structure of neural network, if we only 
use the neural network to express whole dynamics of 
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the robot, and the complicated neural network is 

difficult to use in real time control. In this work, we 

take advantage of both traditional the dynamic 
formulation and neural network for the identification 

of the robot system. The main idea is to combine a 

dynamic compensator designed using neural network 

and dynamic model given (3) to express dynamic 

characteristics of the robot. The mathematical 

representation of the whole system is given as 
follows.  

 

vθθθθ,Nθθθ,Hθθθ,RθθL =+++ ),,(),(ˆ)(ˆ)(ˆ &&&&&&&&&&&&&&&  (6) 

 

where ),,( θθθθ,N &&&&&&  is the compensator to be 

designed with neural network later. 

In the above mathematical model, the terms 

derived from Lagrange formulation play the main role 

in representing the dynamic behavior of the robot, 

and the neural network is used for both purposes, to 

approximate the unmodeled part and to compensate 

for the error of the dynamics caused by the 

imprecision of identified parameters. 
To establish such a mathematical model, first, the 

dynamic parameters of the motion equation (3) are 

identified using the method given in 4 based on 

experimental data. Then, a multi-layer neural network 

is designed and the weights are trained by the back-

propagation method, and the details are presented in 
5. 

 

4. Parameter identification 

Dynamic parameter identification can be done 
based on the dynamic descriptions shown in (4), (5). 

There are two approaches for the parameter 

identification: (a) to identify the unknown parameters 

with respect to individual link separately; (b) to 

identify all the unknown dynamic parameters of the 
robot simultaneously. In this paper, we focus on the 

former approach. The procedure for individual joint 

parameter identification is described as below. 

1) Keep the joints steady except the assigned joint 

(assuming to be joint i) on which the related 

parameters of the robot are identified;  

2) Give a periodic excitation, i.e. periodic servo 

voltage, to the servo unit of joint i; 

3) Record the excitation ),()( N1,2kkv i L=  

and responses of joint i )(),( kk ii θθ & , and 

calculate )(),( kk ii θθ &&&&& , where k indicates the 

sampling number; 

4) Calculate the related regressor given by (5) 

as  ))(),(),(),(()( kkkkk iiiiii θθθθ &&&&&&yy =  according to 

the recorded joint responses on every sampling time 

to form a matrix as 
TT

i

T

i

T

ii N21 )](),(),([ˆ yyyY L= , and form the 

excitation vector T

iiii Nv2v1v )](),(),([ˆ L=v  as 

well; 

5) Based on (4), the parameters related to joint i are 

calculated as follows 

 

iii vΓa ˆˆ =                (7) 

 

where 
iΓ  is a pseudo-inverse matrix of 

iŶ     given by  
 

T

ii

T

ii YYYΓ ˆ)ˆˆ( 1−=         (8) 

 

6) Repeat the process from 1) to 5) for other joints 

till all parameters of the robot are identified. 

Using the above method, optimal solution of 

parameter identification based on the experimental 

result is guaranteed in a sense of least-squares of the 
mean errors. 

5. Design of neural network model 

In this section we give a detail design of dynamic 
compensator using neural network. The neural 

network, with two layers as shown in Fig.1, is 

designed with the form of inverse dynamics for the 

unmodeled dynamic characteristics. This neural 

network is consisting of input unites, hidden layer 

that are designed with nonlinear activation functions, 

and the linear output layer.  

The mathematical model of the neural network is 

given by  

)(2 qfv WU=           (9) 

 

where q  denotes input vector with elements being 

each joint variable, velocity, acceleration and time 

differentiation of acceleration;  
2v  is the output 

vector with the unit of torque; 
ln

R
×∈ 4

W  and 
nl

R
×∈U , with their elements being expressed by 

ijw  and 
jku , are weight matrices from input nodes to 

the hidden layer and from the hidden layer to the 

output layer; lR∈∗)(f  is an activation function 

vector of the hidden layer with elements being 

sigmoid functions; l is the number of hidden nodes.  

For a system that its dynamic characteristics can be 

expressed with a dynamic model precisely, and if the 

system is invertible, with an input of the invert 

system being the output of the original system, output 

of the invert system will repeat the input of the 
original system precisely. We combine an inverted 

dynamics as given by (4) and the neural network as 

given by (9) . 

To train the weights such that the neural network 

can approximate the unmodeled dynamics of the 

robot, we use the input of the original system (the 

robot manipulator) as a desirable input and adjust the 

weights by a learning algorithm so that the error 
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between the desired input and output of the inverse 

system would converge to zero. The learning 

algorithm is derived based on the back-propagation 
approach.  In so doing, firstly we define the error as 

follows. 

 

 ))(())(( 22 vvvvvv 1d1d ++= --
2

1
E

T    (10) 

 

where 
dv  and 

1v  are the desired input and  output of 

the inverse dynamics.  

The learning algorithm is to make a change in the 

weight proportional to the negative of the gradient of 

the quadratic error with respect to the weights, i.e.  

jk

jkjk
u

E
u

∂

∂
−=∆ γ    ( j=1,2,…l;  k=1,2,…n ) (11) 

and 

ij

ijij
w

E
w

∂

∂
−=∆ λ     ( i=1,2…4n;  j=1,2,…l ), 

 (12) 

 

where 
jkγ  and 

ijλ  are the constants of 

proportionality, to be designed as learning rates.  

Using the chain rule and noting that the weights are 

independent with
1v  and 

dv , the derivative of (11) 

can be expressed as follows, 

 

jkjk u

v

v

E

u

E

∂

∂

∂

∂
=

∂

∂ 2k

2k

                     (13) 

 

In detail, 
kvE 2/ ∂∂  and 

jkk uv ∂∂ /2
can be given 

as: 

kdkkk evvv
v

E
−=−+=

∂

∂
21

2k

 (14) 

and 

j

jk

p
u

v
=

∂

∂ 2k  ,           (15) 

 

where 
jp  is the output of jth node of the hidden 

layer.  

Similarly, we adopt the chain rule to (12) to obtain 
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In detail, 
jpE ∂∂ /  and 

ijj wp ∂∂ / can be given as 
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where ju is jth column vector of weight matrix U ;  
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where is is input of ith node of the hidden layer.  

In subsection A, without losing generality, we 

presented a dynamic compensator design based on a 

neural network that is formulated using not only joint 

variables, velocities, but also accelerations and time 

differentiation of the accelerations as its inputs. With 

the whole variables as its inputs, the compensator will 

have better performance in approximating the 

unmodelled dynamics. In real time control, however, 

the neural network will be difficult to be adopted 
since joints’ accelerations and time differentiation of 

the accelerations are not available in sensor systems 

of most industry robot manipulators. Although 

control issue is not directly addressed to in this work, 

we have to take this issue into consideration in the 

design of the compensator because our objective is to 

design a better control system using the identified 

dynamic model. Therefore, there should be a trade-off 

between more accurate approximation and easier 

implementation. In this paper, we prefer to choose the 

later and to design the neural network only with joint 
variables, velocities as its inputs. The simplified 

dynamic compensator has a two-layer neural network 

and the weights of the network are trained based on 

the algorithm given in expressions (10) – (18). 

 

6. EXPERIMENTAL EXAMPLES 

AdeptOne XL robot manipulator is a high 

performance industrial robot as shown in Fig.1. It is a 

SCARA type Direct Drive (DD) robot that possesses 

4 joints. Except the third joint being a prismatic joint, 

other joints are revolute.  

The closed-loop servo system is built-in by Adept 

Technology Corporation based on servo units and 

servo motors. Using the Advanced Servo Library, 
however, the user is allowed to access the D/A 

converter directly to release the close-loop servo 

system for developing more advanced control system 

by V+ language. We developed control and parameter 

identification software on such a software and 
hardware environment.  
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The identification experiments for individual joint 

were carried out. Since the number of pages is 

limited, we cannot show all of the experimental 

results. We carried out identification experiments and 

identified all the dynamic parameters of the robot. 
Since it needs a lot of pages to show the experiments 

and identification results, we give up the idea to show 

the whole work. Instead, we give the experimental 

results of the first joint as an example.  

The excitation 
dv has been chosen as a sine wave 

shown in Fig.2.  The responses of displacement and 

velocity of joint 1 measured by the sensors of the 

robot are given in Fig.3 (a) and (b). The acceleration 

and time derivative of acceleration are calculated 

accordingly, using the Finite Difference Method, and 

the results are shown in Fig.3 (d) and (e). 

The dynamic model for the parameters is a 

restricted version of equations (4), and is given as 

follows:  

 

1d a),,,( θθθθy1
&&&&&&=v ,              (19)  

 
where the regressor and parameters are given as: 

 

][),,,( 111 θθθ &&&&&&&&&&&& =θθθθy1
 (20) 

 
T

aaa ][ 131211=1a            (21) 

 

In detail, the elements of 1a  are given as follows: 

 

111 / αaILa =11
,   

111111 // αα fLIRa a +=12
, 

1111 / aVfLa += α13
 

 

where 
1α , 

1L , and 
1R  denotes the back 

electromotive constant, inductance, and  the 

resistance of the motor of joint 1; 

4321

2

2

2

143

2

2

2

12

2

111 ))(()( IIIIllmmllmlmI gga +++++++++=

 is the total moment of inertia of the manipulator with 

respect to joint 1.  

Using the approach given by section 4, the 

parameters are identified. Fig.4 shows the typical 

results of identified parameters against the number of 
sampling data. It can be seen that each parameter 

converges to a fixed value, when the number of the 

sampling data increases. The dynamic compensator is 

designed and the weights are trained with the 

methods given in the last section. Fig.5 shows the 

output of the inverse dynamics. 
dv  is the reference 

input of the sine wave as teaching signal; v  and 

1v are the outputs of the inverse system with and 

without the dynamic compensator, 
2v  is the output 

generated by the compensator, 
1e  and 

2e  are the 

errors between 
dv  and 

1v  and between  
1v  and 

1v  

respectively. Fig.6 shows the mean squared deviation 
error between the teaching signal and the output of 

the inverse system with respect to the learning time. 

To validate the conrrectness of the identified system, 

we carried out simulations using the dynamics give 

by (6). The input of the system is the same sine wave 

that has been used for the identification experiments.  
 

 
Fig.2. Joint 1 input signal in parameter identification 

experiment. 

 

 
Fig.3. Responses of joint 1 to the input volt shown in 

Figure5 

 
Fig. 1.  AdeptOne robot manipulator 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI                                     FASCICLE XIV 

 

37 

 

 
Fig.4. History of identified parameters with respect to 

the number of the experimental data 

 

 
Fig.5. Validation results: output of the inverse system 
 

 
Fig.6. Mean squared deviation error between the 

teaching signal and the output of the inverse system 
with respect to the learning time 

 

 
(a) 

 
(b) 

 
(c) 

Fig.7. Comparison of experimental and simulation 

results 
 

Fig.7 shows one of the results of simulation 

together with the corresponding experiment carried 

out for the parameter identification of joint 1.  

In Fig.9 (a) and (b),  
1sθ , 

2sθ  and 
eθ  are responses 

of joint 1 with respect to the simulation without the 

dynamic compensator, simulation with the dynamic 

compensator, and experiment; 
1sθ& , 

2sθ& , and 
eθ&  are 

their  velocity. Fig. 7 (c) shows the related 

accelerations. The bold line and thin line indicate the 

accelerations of the joint in the simulations with and 

without the dynamic compensator, as the line with 

noise is the joint acceleration calculated based on the 
experimental data. Comparing it with the responses of 

joint angle, velocity, and acceleration, though it 

exhibits some degrees of differences between the 

simulations and the experiment, it is seen that the 

simulation results with the dynamic compensator 

more effectively converge to their experimental 

counterparts, therefore, the correctness of the system 

with neural network dynamic compensator is 

confirmed. 
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7. Conclusions 
This paper proposed a dynamic identification of 

robot manipulators using a neural network 
compensator. Using a pseudo-inverse matrix 

consisting of the regressors, parameter identification 

was formulated, and it guaranteed the optimal 

solution in a sense of least-squares of the mean errors. 

A neural network was designed to compensate for the 

unmodelled dynamics. Based on the back propagation 
approach, the weights of the neural network were 

trained using sine wave input volt of the robot as its 

reference signal and the output of the inverse system 

consisting of an inverse dynamic model of the robot 

that was formulated by Lagrange Equation and the 

neural network compensator. The parameter 
identification and the dynamic compensator with 

respect to the individual link were implemented for a 

commercially available industrial robot manipulator 

AdeptOne XL. Comparison of simulation and 

experiment results of open loop control under the sine 

wave excitation validated the dynamic identification.  
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