ACOUSTIC ABSORPTION COEFFICIENT VARIATION OF SOUND ABSORBING STRUCTURES AND MATERIALS

Asist. drd. ing. Diana ANGHELACHE University "Dunarea de Jos" of Galati Engineering Faculty of Braila

ABSTRACT

The task of this work is the acoustic absorption coefficient variation study of sound absorbing structures and materials. Three construction equipments have been considered according to their different cabin design. Different sound frequencies and different layers of diverse sound absorbing treatment lead to different absorption average coefficient values.

KEYWORDS: Sound, Frequency, Absorption, Coefficient, Cabin .

1. Introduction

The cabin is exposed to the noise generated by sources which are parts of the construction equipment.

$$\Delta L = 10 \lg \frac{A}{A_0} \left[dB \right] \tag{1}$$

 A_0 - equivalent acoustic absorbing surface of the cabin before insulating, treatment (m2AU); A - equivalent acoustic absorbing surface of the cabin after insulating treatment (m2AU)

The following relation is considered for the equivalent absorbing surface:

$$A = \sum_{i=1}^{n} \alpha_i S_i \tag{2}$$

 S_i - the surface corresponding to "i" partial cabin

area; α_i - acoustic absorbing coefficient

corresponding to "i" area.

The average acoustic absorbing coefficient is calculated as shown below:

$$\alpha_m = \frac{\sum \alpha_i S_i}{S} \tag{3}$$

Acoustic absorbing inside the cabin it is also characterized by the absorption constant "R"[2], [3]:

$$R = \frac{\alpha_m S}{1 - \alpha_m} \tag{4}$$

2. Case study 2.1. MMT 45 equipment

The following values have been considered for MMT 45 equipment cabin:

$$S_1 = 4.7m^2$$
, $S_2 = 1.7m^2$, $S_3 = 3.8m^2$.

Table no. 1 Four layers

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,1	0,071	0,61	0,775
500	0,4	0,209	5,318	2,692
1000	0,8	0,393	8,066	0,502
1600	0,88	0,43	8,455	2,031
2500	0,92	0,448	8,637	0,408

Figure 1- Plotting $R, \Delta L, \alpha_{med}$ function f for four layers for MMT 45 equipment

Table no. 2 Three layers

Table no. 3

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,06	0,052	0,71	0,561
500	0,28	0,154	3,982	1,85
1000	0,54	0,273	6,487	0,211
1600	0,83	0,407	8,216	1,27
2500	0,99	0,481	8,939	0,195

Figure 2 - Plotting $R, \Delta L, \alpha_{med}$ function f for three layers for MMT 45 equipment

				Two layer:
f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,03	0,038	2,04	0,407
500	0,17	0,103	2,242	1,169
1000	0,29	0,158	4,111	0,076
1600	0,56	0,283	6,631	0,46
2500	1	0,485	8,98	0,072

Figure 3 - Plotting $R, \Delta L, \alpha_{med}$ function f for two layers for MMT 45 equipment

Tab	le	n	0.	4
0	ne	, 1	lav	er

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,08	0,061	0	0,667
500	0,11	0,075	0,882	0,829
1000	0,26	0,144	3,713	0,112
1600	0,21	0,121	2,958	0,114
2500	0,31	0,167	4,357	0,023

Figure 4 - Plotting $R, \Delta L, \alpha_{med}$ function f for one layer for MMT 45 equipment

2.2. S 1201 excavator

For S 1201 excavator the following values

cabin:
$$S_1 = 3.8m^2$$
; $S_2 = 1.2m^2$; $S_3 = 511m^2$

Table no. 5 Four layers

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,1	0,062	0,56	0,673
500	0,4	0,174	5,037	2,145
1000	0,8	0,323	7,728	0,322
1600	0,88	0,353	8,111	1,171
2500	0,92	0,368	8,291	0,187

Figure 5 - Plotting $R, \Delta L, \alpha_{med}$ function f for four layers for S 1201 excavator

Table no. 6 Three layers

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,06	0,047	0,64	0,503
500	0,28	0,129	3,745	1,511
1000	0,54	0,226	6,178	0,147
1600	0,83	0,335	7,876	0,759
2500	0,99	0,394	8,589	0,096

Figure 6 - Plotting $R, \Delta L, \alpha_{med}$ function f for three layers for S 1201 excavator

Table	no. 7
Two	layers

— 11

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,03	0,036	1,82	0,379
500	0,17	0,088	2,084	0,984
1000	0,29	0,133	3,868	0,058
1600	0,56	0,234	6,319	0,3
2500	1	0,398	8,63	0,038

Figure 7 Plotting $R, \Delta L, \alpha_{med}$ function f for two layers for S 1201 excavator

Table	no.	8
One	lay	er

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,08	0,055	0	0,587
500	0,11	0,066	0,811	0,717
1000	0,26	0,122	3,486	0,081
1600	0,21	0,103	2,763	0,082
2500	0,31	0,14	4,105	0,013

Figure 8 Plotting $R, \Delta L, \alpha_{med}$ function f for one layer for S 1201 excavator

2.3 CVA 10 vibrating compactor

Considered value:
$$S_1 = 4,5m^2$$
; $S_2 = 2,1m^2$

$$S_3 = 2,2m^2$$
.

Table no. 9 Four layers

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,1	0,07	0,57	0,787
500	0,4	0,2	5,109	2,603
1000	0,8	0,373	7,815	0,469
1600	0,88	0,408	8,2	1,793
2500	0,92	0,425	8,381	0,347

Figure 9 - Plotting $R, \Delta L, \alpha_{med}$ function f for four layers for CVA 10 vibrating compactor

Table no. 10 Three layers

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,06	0,053	0,66	0,583
500	0,28	0,148	3,805	1,81
1000	0,54	0,261	6,258	0,206
1600	0,83	0,386	7,964	1,139
2500	0,99	0,455	8,68	0,172

Figure 10 - Plotting $R, \Delta L, \alpha_{med}$ function f

Table no. 11 Two layers

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,03	0,04	1,87	0,434
500	0,17	0,101	2,124	1,164
1000	0,29	0,153	3,93	0,078
1600	0,56	0,269	6,399	0,429
2500	1	0,46	8,721	0,067

Table no. 14

Figure 11 - Plotting $R, \Delta L, \alpha_{med}$ function f for two layers for CVA 10 vibrating compactor

Table no. 12
One layer

f	α	α_{med}	$\Delta \mathbf{L}$	R
250	0,08	0,062	0	0,684
500	0,11	0,075	0,829	0,84
1000	0,26	0,14	3,544	0,111
1600	0,21	0,118	2,813	0,112
2500	0,31	0,161	4,17	0,021

 S_1 - sound absorbing treated geometric surface; S_2 - sound absorbing untreated metallic surface; S_3 - glass surface.

3.Conclusions

A study of acoustic absorption coefficient variation for sound absorbing structures and materials considering three construction equipments has been performed. The sound material has been considered from one to four layers [1]. Different values have been determined for: R-absorption constant, ΔL -global noise reducing, α_{med} -sound absorbing average coefficient. Different frequencies have been considered. The results can be compared considering the tables below[4]. Notations in the tables above: FB – very good, C – onstant, B – good, S–low.

					Table	no. 13
Equip	Para-		Frequency			
ment	metes	250	500	1000	1600	2500
	R	FB	S	В	FB	В
MMT	ΔL	FB	В	С	С	С
40	$lpha_{\scriptscriptstyle med}$	FB	В	С	С	С
	R	FB	В	В	FB	В
S	ΔL	FB	FB	В	С	С
1201	$\alpha_{_{med}}$	В	FB	FB	C	С
CVA	R	FB	S	В	FB	В
10	ΔL	FB	В	С	С	С
	$\alpha_{\scriptscriptstyle med}$	FB	В	C	C	С

Equip	Para-	Frequency				
ment	metes	250	500	1000	1600	2500
	R	FB	S	В	FB	В
MMT	ΔL	С	В	С	С	С
40	$lpha_{_{med}}$	С	В	C	C	C
	R	FB	S	В	FB	В
S	ΔL	FB	FB	В	С	С
1201	$lpha_{_{med}}$	FB	FB	В	В	В
CVA	R	FB	S	В	FB	В
10	ΔL	FB	FB	В	В	В
	$lpha_{_{med}}$	FB	FB	В	В	В

				1	Table	no. 15		
Equip	Para-		Frequency					
ment	metes	250	500	100	160	250		
ment				0	0	0		
	R	В	S	В	S	В		
MMT	ΔL	FB	В	В	S	S		
40	$lpha_{\scriptscriptstyle med}$	FB	В	В	S	В		
	R	В	S	В	S	В		
S 1201	ΔL	FB	В	С	С	С		
	$lpha_{\scriptscriptstyle med}$	FB	В	С	С	С		
	R	FB	S	В	FB	В		
CVA 10	ΔL	FB	В	C	С	С		
	$lpha_{_{med}}$	FB	В	С	С	С		

Table no. 16

Equip	Para-	Frequency				
ment	metes	250	500	1000	1600	2500
	R	В	В	S	В	S
MMT	ΔL	S	В	S	S	В
40	$lpha_{\scriptscriptstyle med}$	S	В	S	S	В
	R	В	В	S	В	S
S	ΔL	S	В	S	S	FB
1201	$lpha_{\scriptscriptstyle med}$	S	В	S	S	В
CVA	R	В	В	S	В	S
10	ΔL	S	В	В	FB	В
	$lpha_{\scriptscriptstyle med}$	В	В	В	FB	В

REFERENCES

 Anghelache D. – The phonic isolation of the S1201 Excavator cabin - "Pomarian Journal of Acoustics and Vibration" editat de "Pomanian Society of Acoustics", vol. IV, nr. 2/2007, ISSN 1584-7284.

[2] **Bratu, P.** – Acustica interioară pentru construcții și mațini, Editura Impuls, București, 2002

[3] **Iudin, Ia** – *Izolarea împotriva zgomotelor*, Editura Tehnică, București, 1968.

[4] *** Directive 2002/44/EC