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ABSTRACT 
 
The components of the mechanical systems like machines and/or 
technological equipment have a certain elasticity or rigidity. Knowing the 
rigidity of each component is very important for the studies whose goal is 
to establish the dynamic efforts and the stresses in each shaft, gear wheel, 
steel structure, aso. The rigidity can be an important factor for the dynamic 
load estimation process. The components with high elasticity are the most 
important inducers of elastical forces and couples of force; we can 
enumerate: shafts, coupling gears, gears, elastical couplings, springs, long 
steel structures, some working devices, aso. This article presents a method 
and an equation involving the rigidities of the elastical shafts of the 
mechanical transmissions with gears in any point of the system, so that the 
dynamic analysis should become easier. 
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1. Introduction 
 The equivalent coefficient of rigidity is 
the mechanical feature of an equivalent 
elastical element (generally named spring), 
which replaces the real element on the basic 
principle of the equation of the potential energy 
[1]. This means that the deformation potential 
energy of the equivalent element HTY9  is equal 

to the deformation potential energy of the 
actual element 9 . 
 
2. Calculus of the equivalent rigidity 

of the shafts with one step gearing 
 In order to describe the rigidity 
equation method, it is considered a simple 
mechanical driving system as in fig.1, where 

00  is the driving motor moment, :'0  is 
the moment of working device, 2 and 3 are the 
wheels of the one step gearing, �N  and �N  are 
the rigidity coefficients of the shaft I (driving 
shaft) respectively shaft II (driven shaft). 

It is considered that the mechanical 
efficiency of the gearing is η  and the ratio is 
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Fig. 1 The model to calculate the equivalent rigidities 

of the shafts 
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�JZ
�JZL

ω
ω

= ,         (1) 

where �JZω  and �JZω  are the angular speeds 

of the wheel gear 2 respectively 3. 
 The instantaneous real angular rotations 
of the shafts’ terminations are: 

-for the shaft I - �ϕ , �ϕ  

-for the shaft II - �ϕ , �ϕ  
 The equivalent inertia moments of the 
working device and of wheel gear 3 can be 
calculated according to [2]. 
 
2.1. Calculus of the equivalent rigidity 

on the driving shaft 
 If the needs of equation is to be done on 
the shaft I, the fig. 2 shows the calculus model, 
where the significance of the notations is as 
follows: 

HTY�N  - the equivalent rigidity coefficient 

of the driven shaft 

�ϕ , 
�ϕ  - the equivalent angular rotations 

of the driven shaft’s terminations 

�ω  - the average angular speed of the 
driving shaft (in steady-state conditions) 

 

 
 The deformation potential energy of the 
shaft II for real system (fig. 1) can be written 
as: 

 ( )����N�
�9 ϕ−ϕ=          (2) 

 
 For the same shaft II, the potential 
energy, on the basis of the equivalent model 
from fig. 2, has the expression: 
 

( )�
�
�HTY�HTY N�
�9 ϕ−ϕ=         (3) 

 
 Equating the expressions (2) and (3) of 
the potential energy of the shaft II, we obtain: 
 

 
( )
( )���

�
�
�
HTY�
�

N
N

ϕ−ϕ
ϕ−ϕ=          (4) 

 Taking into consideration that, in 
steady-state conditions, the working device 
moment (of resistance) is equal to the elastical 
moment from the driven shaft, it may be written 
as follows: 
IRU�UHDO�V\VWHP 

 
 ( )���:' N0 ϕ−ϕ=          (5) 
 
IRU�HTXLYDOHQW�V\VWHP 

 

 ( )
�
�HTY�:'HTY N0 ϕ−ϕ=         (6) 

 
 Dividing the relations (5) and (6), it is 
obtained: 
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 Considering the relation (4), it may be 
written 
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From (9), we can write: 
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 In order to estimate the fraction 
between working device moments from (10), it 
has to be written the working device power both 
for real system and for equivalent system. 
 
a)Ideal step gearing ( �=η ) 
 If there are no mechanical losses in the 
gearing 2-3, all power from the motor goes to 
the working device, that’s why it may be 
written 
 
 �:'�:'HTY 003 ω=ω=        (11) 

 
From the relation (11), we can write the 

fraction between the working device equivalent 
moment and the working device real moment as 

NN �HTY�

ϕϕ
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Fig. 2 The model to calculate the equivalent 
rigidity of the driven shaft 
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follows: 
 

 
�
�

:'
:'HTY
0

0
ω
ω=         (12) 

 
 Since, in steady-state conditions, the 
average angular speed of the working device 

�ω  is equal to angular speed of the wheel gear 

3 ( �ω ) and the average angular speed of the 

motor �ω  is equal to the angular speed of the 

wheel gear 2 ( �ω ), the relation (12) may be 
written: 
 

 L
�

0
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ω
ω=

ω
ω=        (13) 

 
 Taking into consideration relation (13), 
the calculus formula for the rigidity coefficient 
of the shaft II on the motor shaft is: 
 

  �
�HTY� L
NN =         (14) 

 
b)Step gearing with mechanical losses ( �<η ) 
 If there are mechanical losses in the 
gearing 2-3, the power from the motor goes 
partially to the working device and the 
difference is dissipated in the gearing. In this 
case, we may write 
 

ORVV�:'�:'HTY 3003 +ω=ω= ,       (15) 

 
where ORVV3  is the power losses in the gearing. 
 If the loss of power is written function 
of �ω  as 

  �ORVVORVV 03 ω= ,       (16) 

where ORVV0  is the equivalent loss of moment, 

in the steady-state conditions ( �� ω=ω , 

�� ω=ω ), the power balance done by (15) can 
be written like 
 

( ) �:'�ORVV:'HTY 000 ω=ω− ,      (17) 

or 

�
�

:'
:'HTY

:'HTY
ORVV:'HTY

0
0

0
00

ω
ω=

−
     (18) 

 
 Since, the left side of the relation (18) 
is the mechanical efficiency η  of the gearing 2-
3 and the fraction of the right side is the inverse 
of the gearing ratio (1), we may write 

 

  
η

= L
�

0
0

:'
:'HTY         (19) 

 
Consequently, the relation (10) becomes: 
 

��
�HTY� L
NN
η

=         (20) 

 
2.2. Calculus of the equivalent rigidity 

on the driven shaft 
 Figure 3 shows the calculus model of 
the rigidity equation on the axle of the driven 
shaft II. The significance of the notations is as 
follows: 

HTY�N  - the equivalent rigidity coefficient 

of the driving shaft 

�ϕ , 
�ϕ  - the equivalent angular rotations 

of the driving shaft’ s terminations 

�ω  - the average angular speed of the 
driving shaft (in steady-state conditions) 

 

 
 As in §2.1, the deformation potential 
energy of the driving shaft I can be written like 
this 

( )����N�
�9 ϕ−ϕ=         (21) 

 
 For the same shaft I, the potential 
energy calculated with the equivalent rigidity 

HTY�N  and angular deflections 
�ϕ , 
�ϕ  is as 

follows 
 

 ( )�
�
�HTY�HTY N�
�9 ϕ−ϕ=        (22) 

 
 Since the potential energy of the shaft I 
has to remain the same after the process of 
equation, from relations (21) and (22) it can be 
written the fraction between the rigidities as 
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Fig. 3 The model to calculate the equivalent 
rigidity of the driving shaft 
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follows: 
 

 
( )
( )���
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�
HTY�
�

N
N

ϕ−ϕ
ϕ−ϕ=         (23) 

 
 Assuming that, in steady-state 
conditions, the motor has the same average 
angular speed like the wheel gear 2 and the 
working device has the same average angular 
speed like the wheel gear 3, that meaning 

�� ω=ω  and �� ω=ω , the motor moment has 
to be equal to the elastical torsion moment from 
the shaft I. In consequence, it can be written 

IRU�WKH�UHDO�V\VWHP 
 
 ( )���0 N0 ϕ−ϕ=         (24) 
 

IRU�WKH�V\VWHP�ZLWK�HTXLYDOHQW�ULJLGLW\ 
 

 ( )
�
�HTY�0HTY N0 ϕ−ϕ=        (25) 

 
 Dividing the relations (24) and (25) it is 
obtained 
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Considering the fraction of the rigidities 

done by (23), the relation (26) becomes 
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 From the relation (28),we may say that 
the equivalent rigidity of the shaft I is function 
of the fraction of the motor moments as 
follows: 
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 The fraction between motor moments 
from (29) can be determined by writing the 
motor power both for real system and for 
equivalent system. 
 
a)Gearing with no power losses ( �=η ) 

 Considering 2-3 as ideal, all power 
from the motor goes to the working device, 
that’ s why we may write: 
 
 �0HTY�0 003 ω=ω=        (30) 

 
From (30), we can write: 
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 Since �� ω=ω  and �� ω=ω , the 
fraction between the motor moments can be 
written function of the gear ratio as follows: 
 

 L0
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ω
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ω
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 In this case, the calculus formula of the 
equivalent rigidity of the driving shaft on the 
driven shaft axle is: 
 

 ��HTY� LNN =          (33) 

 
a)Gearing with power losses ( �<η ) 
 Taking into consideration the 
mechanical losses from the gearing 2-3, the 
power from the motor goes partially to the 
working device and the difference is dissipated 
in the gearing. In this case, the balance of the 
power being can be written 
 

ORVV�0HTY�0 3003 −ω=ω= ,       (34) 

 
where ORVV3  is the power losses in the gearing. 
 Writing the loss of power as a function 
of �ω  like 

�ORVVORVV 03 ω=        (35) 

where ORVV0  is the equivalent loss of moment, 
in the steady-state conditions, the power 
balance done by (34) can be written like 
 

( ) �ORVV0HTY�0 000 ω−=ω ,       (36) 

or 

�
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0
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ω
ω=

−
       (37) 

 
 Since, in the left side is the mechanical 
efficiency of the gearing and the fraction 
between angular speeds from right side is the 
gearing ratio, the relation (37) becomes 
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η

= L
0

0
0

0HTY
        (38) 

 
 With the determinated fraction of the 
moments (38), we can write the calculus 
formula for the equivalent rigidity of the 
driving shaft with real gearing like a function 
of the ratio and the mechanical efficiency as 
follows: 

�
�

�HTY�
LNN
η

=         (39) 

3. The equivalent rigidities of the 
mechanism’s shafts with gearings 

 To exemplify the method of the rigidity 
equation for the mechanism with multiple 
gearing, it is considered the driving system for 
a belt conveyor from fig. 4. The skeleton 
diagram of the acting device is shown in fig. 5, 
where 2, 3, 4, 5, 6 and 7 are the gearing wheels 
of the mechanical transmission. It considers as 
known the mechanical efficiencies and the ratio 
of the gearings as follows: 

-gearing 2-3 � �η , �L  

-gearing 4-5 � �η , �L  

-gearing 6-7 � �η , �L  
 Using the calculus relationships 

(0 ,&

2&
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&%&
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Fig. 4 The principle model of a belt conveyor 

Legend: EM-electromotor, IC-inside coupling, OC-outside coupling, G-gear reducer unit, C-case, 
RG-reducing gear, BC-belt conveyor, DP-drive pulley 

 
 
 

N

N

N

N

�

�

�

�
0 ���

ϕ ϕ

ϕ ϕϕ
ϕ ϕ

ϕ

0 � �

� �� 	 

�

�
�

�

�

� �

�

 
 

Fig. 5 The skeleton diagram for the belt conveyor 
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determinated in §2, we will equate the shafts’  
rigidities both on the electromotor axle and on 
the drive pulley axle. 
 
3.1. Rigidities on the electromotor axle 
 Figure 6 shows the calculus diagram of 
the equivalent rigidities on electromotor axle, 
where the formulae for the equivalent moments 
of inertia can be taken from [2]. The calculus 
relationships used in this case are (14) for ideal 
gearings and (20) for real gearings. 

 The equivalent rigidities on the 
electromotor axle for the shafts 2, 3 and 4 are 
shown in the table 1 for both cases (without and 
with mechanical losses). 

 
3.2. Rigidities on the drive pulley axle 
 Figure 7 shows the calculus diagram of 
the equivalent rigidities on the drive axle shaft, 
where, like for §3.1, the equivalent moments of 
inertia can be taken from [2]. The calculus 
relationships used in this case are (33) for ideal 
gearings and (39) for real gearings. 

 

Table 2 shows the equivalent rigidities on the 
drive pulley axle for the shafts 1, 2 and 3, both 
in the case when the mechanical losses are 
taken into consideration and in case they aren’ t. 

5. Conclusions 
 The methods and calculus formulae 
presented in this study are useful both to design 
engineers and to dynamics experts, as well as to 
students, , candidates for master’ s and doctor’ s 
degree. 
 Regarding the ratio L  of the gearings, 
we may draw some conclusions about its 
influence on the equivalent rigidities: 
10if �L =  (gearing for changing the sense of 
rotation only), the equivalent rigidities stay 
unchanged; 
 20if �L >  (reduced step gearing), the rigidity of 
the driving shaft (on the driven shaft axle) is 

amplified by �L  and the rigidity of the driven 
shaft (on the driving shaft axle) is divided by 
�L ; 

30if �L <  (amplifier step gearing) the rigidity of 
the driving shaft (on the driven shaft axle) is 

divided by �L  and the rigidity of the driven 
shaft (on the driving shaft axle) is amplified by 
�L . 

 Taking into consideration the losses of 
power in the gearings trough their mechanical 
coefficients �<η , the equivalent rigidities of 
the shafts are always increased by multiplying 

with �
�

η
. 
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Table 1 Equivalent rigidities on the driving axle shaft  
Ideal gearings ( �=η ) Real gearings ( �<η ) 
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Table 2 Equivalent rigidities on the driven axle shaft  
Ideal gearings ( �=η ) Real gearings ( �<η ) 

�
�

�
�

�
��HTY� LLLNN =  `a```b

`a```b
ac�d%ea LLLNN

ηηη
=  

�
�

�
��HTY� LLNN =  f

f
fg

f
f

fgfh!i%jf LLNN
ηη

=  

�
��HTY� LNN =  �

�

�
��HTY�
LNN
η

=  

N N NN k1l8m%n o1l8m%n pq l8m%n

ϕ ϕ ϕϕ
ω

ϕ ϕ ϕ ϕp r skq o t u
v vv v vv

 
Fig. 7 The calculus diagram for the equivalent 

rigidities on the drive pulley axle shaft 
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Fig. 6 The calculus diagram for the equivalent 

rigidities on the electromotor axle shaft 


